

What's New

WORKNC V2020.1

DATA DESIGN SOLUTIONS (THAILAND) Co., Ltd.

99/23 Software Park Building 12th Floor Changwattana Road Pakkret Nonthaburi 11120 Tel.66-2962-7105-7 FAX 66-2962-710 Homepage: https:// www.datadesign.co.th

3-Axis Roughing

Global Roughing - Using Cutter Profiles for Calculations

ตัวเลือกใหม่ช่วยให้คุณใช้รูปร่างของใบมีดที่ทำโปรไฟล์ใน Global Roughing Toolpath การคำนวณใช้รูปร่างของใบมีดที่แน่นอนและการตรวจจับวัสดุที่แม่นยำ ในทางทฤษฎีแล้วสิ่งนี้จะ ส่งผลให้จำนวนการ Re-roughing อีกครั้งลดลง

นอกจากนี้ยังให้โอกาสใหม่สำหรับเครื่องมือ Conical tools หรือการจัดการ Z-step ตามความยาว ของเครื่องมือตัด

Check box ใช้โปรไฟล์สำหรับการคำนวณมีอยู่ในส่วนรายละเอียดคัตเตอร์ของพารามิเตอร์พาธ ไม่ว่าคุณจะกำหนดคัตเตอร์แบบมีโปรไฟล์หรือไม่:

Toolpath Paramete	ers - 1						
Toolpath Details							
Strategy Type		Global Rou	gh/Rerough		Defa	ults	
Comment					Co	lor	
Sub-comment			* Pro	to *			
Machining Zone							
Window	O View		Boundary (Curve			
+‡+ All	Minimum	Maximum	X	<none></none>	e j		
x	-258.750	258.750	Machining	Plane			
Y	-169.964	169.964	×	<none></none>	•		
Expand Window by			Surface Sel	ection			
0.000	by Diam+Stock		X	<none></none>	<none></none>		
Cutter Details			Toleranc	es			
Tealli		-	UseF	Roughing Model			
00101			Stock Al	lowance		2.000	
Bull-nose R 20	Bull-nose R 20.015 / r 12.015			m Allowance		N/A	
Profiled Cutter			Tolerance		0.1		
Use Profile for Calculation			Stepover 🗌 Auto			16.000	
Calculate as Straig	ght Cutter						
Extra			2		Options		

Global Roughing - New Linking Method

ตอนนี้ Stock Model จะถูกนำมาพิจารณาเมื่อทำการเชื่อมโยงสองรอบใน Z ซึ่งจะช่วยหลีกเลี่ยง การ เคลื่อนย้ายทางลาดลงในสต์อกที่เหลือและทำให้เครื่องมือเสียหาย

ทางเดินเครื่องมือย้ายไปตามระนาบ XY แล้วลงไปด้านนอกสต็อกที่เหลือ

Global Roughing - Reducing Jerky Movements

กระบวนการลดการกระตุกของการเคลื่อนไหวมีอยู่ในกล่องโต้ตอบพารามิเตอร์เพิ่มเติมของพาธ เครื่องมือ Global Roughing เมื่อคุณตั้งโปรแกรมด้วยตัวตัด tapered หรือ conical ช่วยให้คุณลดการ เคลื่อนไหว "wavy" ที่อาจเกิดขึ้นกับเครื่องตัดประเภทนี้

ในตัวอย่างต่อไปนี้ toolpath ที่เหมือนกันถูกคำนวณสองครั้ง ครั้งแรกที่ตัวเลือกลดการเคลื่อนไหว ของ Jerky ถูกปิดใช้งาน (เป็นสีเขียว) และครั้งที่สองเมื่อเปิดใช้งานตัวเลือกลดการเคลื่อนไหวของ Jerky (เป็นสีเหลือง):

Waveform Roughing - Lead-ins at Edge of Stock

คุณสามารถเพิ่มมูลค่าการ Clearance ไปยัง Stock Model การ Clearance นี้ใช้กับการ เคลื่อนย้าย lead-in และ lead-out และการเคลื่อนไหว backpass

ช่วยให้คุณพิจารณาขนาดที่แน่นอนของ Stock Model ซึ่งอาจแตกต่างกันไปในเครื่องและเพื่อ หลีกเลี่ยง ความเสียหายของ Cutter พร้อมวัสดุที่เหลือในระหว่างการเคลื่อนไหว Backpass คุณสามารถกำหนดค่าการ Clearance ในกล่องโต้ตอบการ Cutter Movements:

Cutter Moveme	ents				?	×	
Approach Movem	ents		Safety Plane Retract Movements				
L 020 L 030				● 2D			
				O 3D			
Approach Distance	·	6.000	Retract	t Distance	10	0.000	
Force the First	and Last Point to the Top of the	Stock	Minim	um Retract Distance		N/A	
					🖂 Auto		
			Retract	t Safety Plane Radius		N/A	
			Retract	t Rate	Rapid	•	
Lead-ins / Lead-ou	ts			Back Pass			
	Ramp Angle	e 2.000 linimum Width N/A		Countour Length	N/A		
Vertica	Preferred Minimum Width			Microlift	Auto		
🚺 🛞 Ramp					N/A		
	Open Passes	ice			Auto		
🛃 🔿 Radial	Lead-in Radius	N/	A	Corner Smoothing			
	Minimum Lead-in Radius	N/	A	Corner Smoothing Bad	1.000		
				contra shieuning rau	Auto		
	Waveform Helix Parameter	rs		Thin Wall Formation			
	Helix Diameter	8.00	00	Avoid Forming Thin	walls of Stock		
	2 Auto			Lead-ins at Edge of Sto	ck		
Pre-drill Diamater			N/A	Clearance from Edge of	f Stock 2	2.000	
Entre Daint/c)	Nones	Allenet			Auto		
LINEY PARKIST	< None>						

ตัวเลือกอัตโนมัติช่วยให้คุณสามารถใช้ค่าการ Clearance ซึ่งเป็น 5% ของเส้นผ่าศูนย์กลาง Cutter

ปิดใช้งานเพื่อใช้มูลค่าของคุณเอง ค่าต้องไม่เกิน 20% ของเส้นผ่านศูนย์กลางใบมีด

Waveform Roughing - Avoiding Thin Walls

ในช่วงวัฏจักรของ Waveform Roughing จะมีการสร้าง thin walls วัสดุพิเศษนี้อาจทำให้เครื่อง ตัดเสียหายในระหว่างการผ่านรอบสุดท้าย

ตอนนี้กล่องโต้ตอบ Cutter Movements มีตัวเลือกเพื่อหลีกเลี่ยงการ thin walls เหล่านี้

Cutter Movement	ts				?	×
Approach Movements				Plane Retract Movements 2D 3D 		
Approach Distance 6.000			Retract	Distance	-	10.00
Force the First and Last Point to the Top of the Stock			Minim	um Retract Distance		N/A
					🖂 Auto	
			Retract	Safety Plane Radius		: N/2
			Retract	Rate	Rapid	8
Lead-ins / Lead-outs				Back Pass		
V. Oner	Ramp Angle		2.000	Countour Length	P	
Citter O vertical	Preferred Minimum	Width	N/A		Auto	
Ramp First Pass at Approv Open Passes		Auto proach Rate		Microlift	Auto	N/4
其 🔿 Radial	Lead-in Radius		N/A	Corner Smoothing		
	Minimum Lead-in	n Radius	N/A	Corner Smoothing Rad	fius	1.00
					Auto	
	Waveform Helix P	arameters		Thin Wall Formation		
	Helix Diameter	8	8.000	Avoid Forming Thi	n Walls of Stock	
		🗹 Auto		Lead-ins at Edge of Sto	ick	
Pre-drill Diameter		N/A	Clearance from Edge of	of Stock	N/4	
Entry Point/c) X				🗹 Auto		
cital formation	<u>.</u>					
		OK			Cancel	

ตัวเลือกนี้มีประโยชน์อย่างยิ่งสำหรับ hard materials และหัว solid carbide

Holder Collision Avoidance - Clearance on Narrow Sections of the Holder

เมื่อเครื่องมือมีขนาดใหญ่กว่าส่วนประกอบตัวยึดบางตัวคุณสามารถหลีกเลี่ยงการใช้ค่าการ Clearance ตัวยึดกับส่วนแคบ ๆ ของที่ยึดซึ่งมีขนาดเล็กกว่าเส้นผ่านศูนย์กลางของเครื่องตัด หากต้องการ ทำเช่นนั้นให้ยกเลิกการใช้ตัวเลือก Apply Holder Clearance on Holder Sections < Cutter Diameter

Wie Holder Collision Avoidance Parameters			?	×
Holder Collision Avoidance Parameters	Holder Preview			
This option avoids collisions between the Tool	Holder and the Stock by modifying the t	oolpath during calculations.		7
Perform Tool Holder Collision Detection du	ring Calculation			/
Tool Holder Definition			New /	
O Cylindrical Holder	holder			
Profiled Holder	Profiled Holder New holder			
Calculation Parameters) (
Spindle - Clearance with respect to Surface+	Stock	4.000		
Holder - Clearance with respect to Surface+S	itock	3.500		
Extension - Clearance with respect to Surface	e+Stock	0.000		
Apply Holder Clearance on Holder Sectio	ns < Cutter Diameter			
Effective Tool Length		20.000		
	ОК	Car	ncel	

Roughing Toolpath Edition - Force Retracts to Retract Plane

เมื่อทำการแก้ไขเส้นทางเครื่องมือคร่าวๆจะทำการคำนวณการถอนกลับและการเชื่อมโยง อย่างไร ก็ตามสิ่งนี้ไม่ได้พิจารณาถึงรูปแบบสินค้าคงคลังซึ่งอาจนำไปสู่การชนกับเครื่องตัด

ด้วยเหตุนี้เมื่อเปิดใช้งานพังก์ชั่น Toolpath Edition บนทางเดินเครื่องมือคร่าวข้อความเตือน ต่อไปนี้จะปรากฏขึ้น:

Wn WO	rknc ×
	WARNING! It can be very dangerous to edit a Roughing toolpath
	Are you sure that you want to continue?
	Yes No
•	

เราขอแนะนำอย่างยิ่งว่าคุณไม่ควรปรับเปลี่ยนเส้นทาง Roughing toolpaths.
 หากคุณคลิกใช่ข้อมูลต่อไปนี้จะปรากฏขึ้น:

การเคลื่อนไหว retract ทั้งหมดจะถูกบังคับไปยัง retract plane

3-Axis Finishing

3-Axis - Between 2 Curves - Perform Center Pass

ตัวเลือกดำเนินการผ่านศูนย์ได้รับการเพิ่มลงในกล่องโต้ตอบระหว่าง 2 เส้นโค้งของเส้นทาง ช่วยให้คุณตรวจสอบให้แน่ใจว่ามีการสร้าง Center pass นอกจากนี้ยังรับประกันการกระจายผ่านที่ดีขึ้น ระหว่างสองเส้นโค้งที่เลือกไว้

oolnath Details							Entry Po	ints		
				Defaulte	× (None)					
trategy lype	Between 2 Curves					Defaults				
Comment						Color	Machini	ng Method		
ub-comment						* Proto *		Pa	rallel	
Aachining Zone										
Window	O View		Bound	lary Curve			MU B	etween 2 Curves	l í	~
🕂 All	Minimum	Maximum	\mathbf{X}		None>		Curv	es .		
x	-199.240	-49.240	Machir	ning Plane			First	Curve	Curve_000.crv	
Y	-60.598	152.402	\mathbf{X}		(None>		Seco	ond Curve	Curve_001.crv	
xpand Window by			Surface	e Selection			Drive	Direction		
0.000	by Radius+Stock		\mathbf{X}		None>		Cinc	Direction		
Calculate as Straigh	t Cutter		To	epover 🗹 Aut	o	0.100 1.170	6	Perform Co	enter Pass	es)
Machining Parameters			Z-	Step				01	Count	
fethod		N/A		None		0.000		OK	Cancel	
ycle		Box	Cu	utter Movements						
irection		N/A	Ap	pproach	6	.000 (3D)				
IC Machine Parameter	s		Re	etract	10	0.000 (2D)				
Feed R	ate = 600 @ 1200 r	pm	Le	ad-ins		Vertical				
Use Cutter Compen	sation									

ตัวเลือกนี้สามารถใช้ได้กับทิศทางการ Parallel drive direction

ไม่มี Center Pass:

ด้วย Center Pass:

5-Axis Toolpaths

5-Axis Rolling Toolpath Improvements

5-Axis - Rolling toolpath ใหม่ได้รับการปรับปรุงเพื่อการยศาสตร์ที่ดีขึ้น

5-Axis Curve Set Definition

กล่องโต้ตอบนิยาม Surface Rolling มีการเปลี่ยนแปลง:

Version 2020.0

Rolling surface definition						
Guide Surfaces						
↓ A	\times					
Select Surfaces	Clear Surfaces					
Main tool direction	+Z 🔻					
Options						
Follow bottom surfa	ce direction 🔹					
Invert Machining Side						
Parameters 0	K Cancel					
	±.					

Version 2020.1

Rolling Surface Definition									
Guide Surfaces									
new Edit									
Main Tool Direction	Graphic view								
Options									
Follow Bottom Sur	face Directio	on 🔻							
Invert Machining	g Side								
Define Start Points									
Parameters	OK	Cancel							

Start Point Definition

ตอนนี้คุณสามารถกำหนดจุดเริ่มต้นของคุณเองสำหรับเส้นทางเครื่องมือ

- ? คำจำกัดความของจุดเริ่มต้นมีให้เฉพาะสำหรับ closed curves
 - 1. คลิกที่ปุ่มกำหนดจุดเริ่มต้น
 - 2. คลิกที่จุดใหม่บนชุดเส้นโค้ง 5 แกน

จุดเริ่มต้นใหม่จะได้รับการตรวจสอบโดยอัตโนมัติ

Context Menus

เมนูในชุดเส้นโค้ง 5 แกนและกฎได้ง่ายขึ้น:

5-axis Curve Set - Version 2020.0 - Context Menu:

Rule - Version 2020.0 - Context Menu:

5-axis Curve Set - Version 2020.1 - Context Menu:

Rule - Version 2020.1 - Context Menu:

Miscellaneous Improvements

Part Centering

ฟังก์ชันการจัดกึ่งกลางช่วยให้คุณสามารถชดเชยการเยื้องศูนย์ของเครื่องโดยใช้วัฏจักรการ ตรวจวัดบนคอนโทรลเลอร์ Heidenhain ® การวางแนวของชิ้นส่วนถูกกำหนดโดยการวัดสองจุด (ดู 1 และ 2 ในภาพด้านล่าง) ซึ่งจะต้องวางเป็นเส้นตรง การเยื้องศูนย์นั้นได้รับการชดเชยโดยหมุนแกน A, B หรือ C ผลลัพธ์ของรอบการโพรบจะถูกเขียนโดยอัตโนมัติในไฟล์ NC ที่สร้างขึ้น

- ฟังก์ชันการอยู่ตรงกลางส่วนจะต้องใช้ก่อนที่จะเขียนโปรแกรม Toolpaths
- คุณต้องกำหนดของการตัดเฉือนก่อนที่จะใช้ฟังก์ชัน
- เราแนะนำอย่างยิ่งให้คุณอ่านเอกสารการเขียนโปรแกรมรอบจาก Heidenhain ® ก่อนที่จะใช้ ฟังก์ชัน
- ฟังก์ชันการจัดกึ่งกลางส่วนใช้งานได้เฉพาะกับคอนโทรลเลอร์ Heidenhain ® เท่านั้น

Access

 คลิกขวาที่ Machining Context ใน Workzone Manager แล้วเลือก Define Part Centering กล่องโต้ตอบต่อไปนี้จะปรากฏขึ้น:

Part Centering		
Context C800U[MACHINE_POSITION	_1]	
Controller Configuration t_Centering	/Sample_Heidenhair	n_table_Z.prbcfg
Origin definition Heidenhain/G351/8	table Z 2 pr	edefined sequence Select
Cycle Sequence	Operation 403 - Op	ption 0
Centering on block	Alignment by 2 co	ontact points
Progressive Preset 0	Action	Origin Set 👻
Probe Length 10.000	Margin	10.000 Approach 20.000
4 Alignement - Segment	Probe Orientation	+Z •
Position - Segment Position - Segment	Measurement	X Top-to-Bottom T
Position - Contact	Security Height	440.000 🗌 🗌 Auto
a	Points	
	Auto Cont	ext : C800U[MACHINE_POSITIO 🔻
	Def. Pt 238.323	8.000 42.000
	238.323	268.407 42.000
	Ref. Pt 238.323	8.000 42.000
	238.323	268.407 42.000
	Compensated Avia	· · ·
	Compensated Axis	
Code Preview		
;		^
;- G351 origin start		
* - TOOL CALL Messtaster		
; TOOL CALL "MESSTASTER" Z S50		
		~
Settings Result File		OK Cancel

Procedure

ขั้นตอนแรกของกระบวนการจัดกึ่งกลางส่วนประกอบด้วย:

- การเลือกการกำหนดค่าตัวควบคุม
- การเลือกว่าคุณต้องการจัดกึ่งกลางโมเดลสินค้า (กล่องขอบชิ้นส่วน) หรือชิ้นส่วนเรขาคณิต (โดย ใช้ลูกศรของไอคอน)
- การเลือกลำดับที่กำหนดไว้ล่วงหน้า (โดยใช้ปุ่มเลือก)

Sequence selection

การคลิกปุ่มเลือกจะเปิดกล่องโต้ตอบต่อไปนี้:

Wn Selection		?	×
Available Sequences			
Centering on block			
Centering one point			
			_
	ОК	Can	cel
	on	Cull	

ลำดับที่ใช้ได้ขึ้นอยู่กับไฟล์การกำหนดค่าที่เลือก ที่นี่เรามีสองตัวเลือก:

Centering on block : ตัวเลือกนี้มีประโยชน์ในการจัดกึ่งกลางโมเดลสินค้าหรือเรขาคณิตส่วนหนึ่ง Centering one point : ตัวเลือกนี้ช่วยให้คุณกำหนดจุดติดต่อที่เครื่องจะใช้เพื่อตรวจจับว่ามีชิ้นส่วนหนึ่งต่อ หนึ่งเครื่องอยู่หรือไม่ ใช้เมื่อตัดเฉือนชิ้นส่วนหลายชิ้นบนพาเลท